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Fig. 1. A stack of three 4D hypercubes

I present a formulation for Rigid Body Dynamics that is independent of
the dimension of the space. I describe the state and equations of motion of
rigid bodies using geometric algebra. Using collision detection algorithms
extended to 𝑛D I resolve collisions and contact between bodies. My imple-
mentation is 4D, but the techniques described here apply to any number
of dimensions. I display these four-dimensional rigid bodies by taking a
three-dimensional slice through them. I allow the user to manipulate these
bodies in real-time.
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1 INTRODUCTION
Our experience of physical space is three dimensional. Consequently,
physically-based simulations (physics engines) have so far been fo-
cused on and restricted to the two and three-dimensional cases.
However using the appropriate formulation of the required equa-
tions it is possible to extend them to higher dimensions. Geometric
algebra provides a simple dimension-independent formulation. This
allows real time manipulation of 𝑛-dimensional shapes that collide
with each other as if they were real objects, which makes them
much less abstract, in stark contrast with most people’s experience
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of them. While attention has been given to understanding and visu-
alizing high-dimensional spaces and other abstract mathematical
concepts, it has most often remained limited to visualizing these
concepts without any physicality or object-to-object relationships.

Contributions. The contributions of this paper include:

(1) extending the geometric algebra-based formulation of classi-
cal 3D rigid body dynamics to 𝑛D. By representing geometric
algebra operators as matrices, one can in particular construct,
diagonalize and transform the inertia tensor for arbitrary
𝑛D simplicial meshes for any 𝑛, in a simple way. This en-
ables formulating the Euler equation in 𝑛D, which allows e.g.
studying the case of the 4D Euler equation under torque-free
conditions.

(2) computing collision and contact processing in 𝑛D, including
static and kinetic friction. I give an 𝑛D formulation for the
Minkowski difference and separating axis theorem collision
detection methods based on geometric algebra.

(3) a method of interacting with 4D objects that is akin to our
3D experience of reality.

2 RELATED WORK
Interactive Simulation of 3DRigid BodyDynamics is a broad field. Ben-
der et al. [2014] provide a survey.

[Cameron 1990] has formulated the 3D continuous collision
detection problem as a discrete 4D collision problem by considering
the extrusion of each object over time.

Visualizing 4D objects is an interesting and challenging problem
of its own, with a long history [Abbott 1884; Banchoff 1990; Chu et al.
2009; Hilbert and Cohn-Vossen 1952]. Many ways of manipulating
4D shapes have been proposed [Yan et al. 2012; Zhang and Hanson
2006].
Geometric algebra operates on a space of elements called mul-

tivectors, of which vectors are a subspace. While vectors can be
thought of as oriented line-segments, other elements can represent
oriented areas (bivectors), volumes (trivectors), and so on. Geomet-
ric algebra also defines operations that correspond to translations
and rotations of these elements. The book by Macdonald [2011]

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392483
https://doi.org/10.1145/3386569.3392483
https://doi.org/10.1145/3386569.3392483


1:2 • ten Bosch, M.

and the course by Gunn and De Keninck [2019] provide introduc-
tions. Dorst et al. [2009] provide an introduction to implementing
geometric algebra in programs. Doran and Lasenby [2003] apply
geometric algebra to the case of 3D rigid bodies.

Cayley [1846] first proposed generalizing the Euler equation
to 𝑛D. The problem has been studied analytically primarily using
matrix analysis, which becomes complex quite quickly (e.g. [Sinclair
and Hurtado 2005]).
I chose to use geometric algebra due to its simplicity, generality,

and coordinate-free nature, which allows the equations of motions
to remain the same as in the 3D case when generalized to 𝑛D.
Projective and conformal geometric algebras allow to combine

the translational and rotational components into a single equation
in a similar way to how homogenous coordinates allow matrices to
represent both these components as single transformations. Gunn
[2011] uses projective geometric algebra to formulate 2D and 3D
rigid body motion in a metric-neutral way that also applies to non-
euclidean spaces. In the interest of simplicity I chose not to use this
formulation.

3 BACKGROUND
This section briefly reviews geometric algebra and its application
to rigid body dynamics in 3D as described by Doran and Lasenby
[2003]. However these equations remain the same in 𝑛D.
Using geometric algebra one can write equations for rigid body

evolution in 𝑛 > 1 dimensions as:

𝑥𝑡 = 𝑣 𝑅𝑡 = − 1
2𝜔𝑅

𝑣𝑡 = 𝐹/𝑚 𝐿𝑡 = 𝜏

where 𝑥 and 𝑅 are the position (a vector) and orientation (a rotor), 𝑣
is the velocity (a vector) and 𝜔 is the angular velocity (a bivector),
𝐹 is the net force (a vector), 𝑚 is the mass (a scalar), 𝜏 is the net
torque (a bivector), and 𝐿 is the angular momentum (a bivector). The
t-subscript denotes the time-derivative. The product used for the
angular velocity bivector and the orientation rotor is the geometric
product, described later.

Angular velocity is represented as a bivector. A bivector is formed
from the exterior product of two vectors:

𝐵 = 𝑎 ∧ 𝑏

and has𝑘 =
(𝑛
2
)
coordinates, one for each pair of different orthogonal

basis vectors. These components can be stored in memory the same
way as for a vector, in a continuous array of 𝑘 numbers.

If a particle has momentum 𝑝 and position vector 𝑥 from some
origin, the angular momentum of the particle about the origin is
defined as the bivector

𝐿 = 𝑥 ∧ 𝑝.
The usual representation involves a cross product, which is only
defined in 3D. In three dimensions, vectors are “dual” to bivectors:
roughly speaking, in 3D the space orthogonal to a line (vector) is
a plane (bivector). This means that in 3D one can use vectors and
bivectors somewhat interchangeably. This has led to the wide use
of representing angular velocity as vectors. These “axial” vectors
transform differently than regular vectors. Bivectors are a more nat-
ural representation because they are straightforwardly transformed

to different coordinate systems using geometric algebra, and make
the equations work in any number of dimensions.
𝑁 -dimensional rotors provide a representation of rotations that

is a replacement for quaternions (3D) and complex numbers (2D)
that works in any number of dimensions. The rotor that rotates in
the plane defined by the vectors 𝑎 and 𝑏 by twice the angle between
these two vectors is defined by the geometric product of 𝑎 and 𝑏:

𝑅 = 𝑎𝑏 = 𝑎 · 𝑏 + 𝑎 ∧ 𝑏.
It has a scalar term and a bivector term, similar to the real and
imaginary terms of complex numbers and quaternions. This kind of
sum is called a multivector. The geometric product can be extended
to multivectors and hence to rotors themselves. Just like for quater-
nions, the product of two rotors results in a new rotor that encodes
applying the two rotations one after the other. To rotate a vector
using a rotor, the following formula is used:

𝑥 ′ = 𝑅𝑥�̃�

where �̃� denotes the reverse of 𝑅, which is similar to the conjugate
for quaternions and complex numbers. Products of rotors produce
multivectors that are the sum of𝑚-vectors where𝑚 is even and less
than or equal to 𝑛 (this forms an algebra called the even sub-algebra).
In 3D a general rotor still has only a scalar part and a bivector part
(which has 3 components), i.e. the product of two rotors still results
in a rotor that can be represented by a single plane of rotation. But in
4D an object can rotate around two independent planes of rotation
simultaneously: a general rotor has a scalar part, a bivector part
(which has 6 components), and a 4-vector part (which has only one
component). I hence store a four-dimensional rotor in memory as a
continuous array of 8 numbers.

The instantaneous velocity of a point 𝑟 on the body, in the reference-
frame of the body, is: 𝑣 + 𝑟 · 𝜔 . The dot product used (·) is a gener-
alization of the dot product to multivectors, also sometimes called
the left contraction (⌋).
Angular momentum is related to angular velocity by a linear

mapping

𝐿(𝜔) =
∫
𝑉

𝑟 ∧ (𝑟 · 𝜔) d𝑉

taking bivectors to bivectors. Doran and Lasenby [2003] take this
integral over the three-dimensional volume of the object.

If a body is rotated by a rotor 𝑅 its angular momentum can be ex-
pressed in terms of a time-independent linear mapping I computed
once in the initial local frame of the body:

𝐿(𝜔) = 𝑅I(𝜔)�̃�. (1)

In 3D vectors are dual to bivectors, so the mapping I from bivectors
to bivectors can be turned into a mapping from vectors to vectors
by taking the dual from vectors to bivectors, applying the mapping,
then taking the dual again to get back to vectors. This mapping can
then be represented by a matrix: the inertia tensor.

Differentiating Equation (1) with respect to time, keeping in mind
that it is only the rotors that are time dependent gives the familiar
form of Euler’s equation:

𝐿𝑡 (𝜔) = I(𝜔𝑡 ) − 𝜔 × I(𝜔) = 𝜏 (2)

where× is not the regular cross product but the commutator product
𝐴 × 𝐵 = 1

2 (𝐴𝐵 − 𝐵𝐴), used here for two bivectors 𝐴 and 𝐵. The
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quantities in this equation are expressed in the reference-frame of
the body (which is rotating with the body).

4 𝑛DIMENSIONAL GENERALIZATION
Representing the inertia tensor as a mapping from vectors to vectors
only works in 3D so I do not take the dual.
To represent this bivector mapping, I first define a 𝑘 × 𝑛 matrix

[𝑟 ]★ such that
𝑟 ∧ 𝑎 = [𝑟 ]★𝑎 (3)

for two vectors 𝑟 and 𝑎. It is a generalization of the cross product
matrix [𝑟 ]× such that 𝑟 × 𝑎 = [𝑟 ]×𝑎, but I do not take the dual:
the range of this transformation is a bivector seen as a vector of
dimension 𝑘 . Also note that

𝑟 · 𝜔 = [𝑟 ]𝑇★𝜔
where, again, the domain of this matrix transformation is a bivector
seen as a vector of dimension 𝑘 .
Using these definitions I define a 𝑘 × 𝑘 matrix 𝐼 that generalizes

the inertia tensor:

I(𝜔) =

∫
𝑉

[𝑟 ]★[𝑟 ]𝑇★ d𝑉𝜔

=

∫
𝑉

Δ𝐼 d𝑉𝜔

= 𝐼𝜔.

The integral is also taken over the 𝑛-dimensional volume instead of
the three-dimensional volume as would normally be done.

I give [𝑟 ]★ and Δ𝐼 in 2, 3, and 4 dimensions in appendix A. Note
that they are given with respect to lexicographically-ordered bivec-
tor basis elements (ex: 𝑒𝑥𝑦 ,𝑒𝑥𝑧 ,𝑒𝑦𝑧 ), but this is an arbitrary choice.

The inertia tensor’s range and domain are bivectors and transform
as such. Therefore I define a 𝑘×𝑘 matrix [𝑅]2 such that for a bivector
𝐵 seen as a vector, [𝑅]2𝐵 = 𝑅𝐵�̃�. Then:

𝐼 ′ = [𝑅]2𝐼 [𝑅]𝑇2 (4)

or, in terms of the mapping itself: 𝑅I(�̃�𝜔𝑅)�̃� = 𝐼 ′𝜔 . This lets me
express equation (2) in a global inertial reference-frame:

𝐿𝑡 (𝜔) = 𝐼 ′𝜔𝑡 − 𝜔 × 𝐼 ′𝜔 = 𝜏 . (5)

The formula for the time-derivative of a rotor (𝑅𝑡 = − 1
2𝜔𝑅) is similar

to and hence can be substituted for the formula for quaternions that
would be used in 3D systems. My implementation uses a (symplectic
Euler) time-stepping scheme based on the one by Guendelman et al.
[2003] but other time-stepping schemes could be used. I integrate
the gyroscopic term of eq. (5) separately using an implicit Euler
method [Catto 2015].

As the angular velocity is integrated, small errors can accumulate
in the rotor 𝑅 representing the orientation of the body. In three
dimensions, when a quaternion is used instead of a rotor, the effect
is corrected by normalizing the quaternion after each time-step.
However this is insufficient in 4D and higher: while simple rotors
that are formed from the geometric product of two unit vectors
do lie on a (𝑘 + 1)-dimensional sphere within R𝑛 , this is not the
case for rotors which correspond to double rotations (or more). To
correct for small errors I factorize the rotor with respect to the
geometric product to get a set of vectors whose product give the

original rotor using the algorithm by Perwass [2009]. The algorithm
returns normalized vectors, guarantying that the rotor re-formed
from their product will represent a proper rotation. The gyroscopic
term in particular often generates double rotations which cannot
be corrected simply by normalizing.

5 INERTIA TENSOR OF ARBITRARY 𝑛D SIMPLICIAL
MESH

A 𝑛D simplicial mesh is built from multiple (𝑛 − 1)-simplices, ex: a
3D simplicial mesh is built from multiple triangles, a 4D simplicial
mesh is built from multiple tetrahedra, and so on.
Due to the linearity of the inertia tensor, to compute the inertia

tensor of an arbitrary 𝑛-mesh in any dimension it suffices to sum
the inertia tensors of 𝑛-simplices built from each (𝑛 − 1)-simplex
and the origin of the reference frame.
It is possible to compute the inertia tensor of an arbitrary 𝑛-

simplex directly from its vertices by evaluating the products of
inertia integrals:

𝑃 𝑗𝑘 =

∫
𝑉

𝑗𝑘𝜌 d𝑉

where 𝑗 and 𝑘 are coordinates axes. These integrals can be sim-
plified using Gauss’ theorem [Dobrovolskis 1996]. However, gen-
eralizing the method of Blow and Binstock [2004] proves to be
simpler. They first compute the covariance matrix of the body, then
transform the covariance matrix into the inertia tensor. Given a
matrix𝑀 that transforms the vertices of a canonical simplex into
those of an arbitrary simplex, the covariance matrix 𝐶 ′ of the ar-
bitrary simplex is related to that of the canonical simplex 𝐶 such
that 𝐶 ′ = 𝑑𝑒𝑡 (𝑀)𝑀𝐶𝑀𝑇 . The covariance matrix of a canonical 𝑛-
simplex has two terms of interest𝐶𝑥𝑥 and𝐶𝑥𝑦 . They are the integral
of 𝑥2 and 𝑥𝑦 over the hypervolume of the 𝑛-simplex aligned with
the coordinate axes.

𝐶𝑥𝑥 =
2

(𝑛 + 2)! ,

𝐶𝑥𝑦 =
1

(𝑛 + 2)! .

To transform the covariance matrix into the inertia tensor in 𝑛D,
I take inspiration from Trenkler [2001] and expand [𝑟 ]★ in the
coordinate basis:

[𝑟 ]★ =

𝑛−1∑
𝑖=0

𝑟𝑖 [𝑒𝑖 ]★.

The inertia tensor can then be derived from the covariance matrix
𝐶:

[𝑟 ]★[𝑟 ]𝑇★ = (
𝑛−1∑
𝑖=0

𝑟𝑖 [𝑒𝑖 ]★) (
𝑛−1∑
𝑗=0

𝑟 𝑗 [𝑒 𝑗 ]𝑇★)

=

𝑛−1∑
𝑖, 𝑗

𝑟𝑖𝑟 𝑗 [𝑒𝑖 ]★[𝑒 𝑗 ]𝑇★∫
𝑉

[𝑟 ]★[𝑟 ]𝑇★ d𝑉 =

𝑛−1∑
𝑖, 𝑗

𝐶𝑖 𝑗 [𝑒𝑖 ]★[𝑒 𝑗 ]𝑇★ .
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It is also needed to compute the mass of the 𝑛-simplex, which can
be computed from its density and its volume 1

𝑛!𝑑𝑒𝑡 (𝑀).
It is usual and useful to chose a body’s local coordinate-frame

such that its inertia tensor 𝐼 is diagonal. A traditional matrix di-
agonalization algorithm would produce a rotation matrix, but this
(𝑘 × 𝑘) matrix would apply only to bivectors (like in eq. (4)) instead
of vectors, and so would not be useful as is. However, note that if the
𝑛 × 𝑛 covariance matrix is diagonal, then the inertia tensor will be
as well. Therefore before computing the inertia tensor I first rotate
the body using the rotation matrix that diagonalizes the covariance
matrix.

6 COLLISION RESOLUTION
Using the matrix from (3) I generalize the method of collisions,
including static and kinetic friction, of Guendelman et al. [2003],
but the scheme is general enough to be applied to other methods. I
also use their Contact Graph and Shock Propagation schemes.
After a collision I apply equal and opposite impulses 𝑗 to each

body to obtain 𝑣0 = 𝑣 ± 𝑗/𝑚 and 𝜔0 = 𝜔 ± 𝐼−1 (𝑟 ∧ 𝑗) = 𝜔 ± 𝐼−1 [𝑟 ]★ 𝑗
where 𝑟 points from their respective centers of mass to the collision
location. The new velocities at the point of collision will be 𝑢0 =

𝑢 ± 𝐾 𝑗 where 𝐾 = 𝛿/𝑚 + [𝑟 ]𝑇★𝐼−1 [𝑟 ]★ with 𝛿 the 𝑛 × 𝑛 identity
matrix.

Using this formulation static and kinetic friction can be expressed
the same way as in three dimensions.

7 COLLISION DETECTION

7.1 Hyperspheres with Polytope or Cylinder
To determine if a (𝑛 − 1)-sphere is colliding with an 𝑛-polytope or
𝑛-cylinder I generalize the sphere/convex-object collision detection
algorithm which is based on the Minkowski Difference (for exam-
ple: [Ericson 2004]). It finds the closest point on the surface of the
object to the center of the hypersphere and checks that it is less
than one hypersphere radius away. Note that the closest point may
be on a (𝑛 − 1)-cell, or on the cell’s boundary, which it shares with
one or more cells — the dimension of the boundary depends on the
number of cells that share it (for example in 4D two 3D cells share a
face, three cells share an edge, and so on). The projection operator
𝑎 ∥ = (𝑎 · 𝐵)/𝐵 of a vector 𝑎 onto a subspace represented by the
𝑛-vector 𝐵 is used to find the closest point.

7.2 Two arbitrary convex polytopes
For two arbitrary convex polytopes I generalize the separating axis
theorem collision detection method [Gottschalk 1996] to 𝑛D. A 𝑛-
polytope 𝑎 contains a certain number of𝑚-cells, where𝑚 < 𝑛. Each
𝑚-cell 𝑖 is spanned by𝑚 vectors. The exterior product of these𝑚
vectors is the𝑚-vector 𝑉𝑚

𝑎 (𝑖). Given two 𝑛-polytopes 𝑎 and 𝑏, for
each sets of cells such that𝑚𝑎 +𝑚𝑏 = 𝑛 − 1, form all the exterior
products:

𝑉
𝑚𝑎
𝑎 (𝑖) ∧𝑉𝑚𝑏

𝑏
( 𝑗) ∀𝑖, 𝑗 .

The potential separating axes are the dual vectors to the resulting
(𝑛−1)-vectors. Note that this contains the case of the empty exterior
product where𝑚𝑎 = 𝑛−1 and𝑚𝑏 = 0. These are simply the normals
to the (𝑛 − 1)-cells (the faces in 3D) of each polytope.

Fig. 2. A user rolls a duocylinder on top of a layer of hyperspheres. Some of
them appear to be floating because they are offset in the fourth dimension
from our view.

In 3D this formulation is equivalent to taking the cross product
(i.e. the dual of the exterior product of two 3D vectors) of the edge
direction vectors as potential separating axes. This corresponds to
edge/edge collisions. In 4D one instead needs to take the dual of the
exterior product of all the edge direction vectors of polytope 𝑎 with
the face bivectors of polytope 𝑏 and inversely. This corresponds
to the case of 1D edge / 2D face collisions. The 1D edge / 1D edge
case is subsumed by this case, similarly to how the vertex case is
subsumed by the line case in 3D [Ericson 2004].
I implement the specific case of Oriented Boxes by extending

the method of Eberly [2002] to 𝑛D. All scalar triple products are
replaced by exterior products. A 4D hypercube has 8 cells, 24 faces,
32 edges and 16 vertices, but because it is symmetric it has only 4
unique vectors (normals or edge directions) and one can only form 6
unique bivectors. Therefore one needs to check 4×2 vectors coming
from cell normals and 4 × 6 × 2 = 48 vectors coming from exterior
products.

8 INTERACTIVE SIMULATION AND DISPLAY
I display a three-dimensional slice of the interactive four-dimensional
objects. These 4D objects have a three-dimensional surface, repre-
sented by a 4D mesh made of simplices (in this case tetrahedra). At
any moment only the intersection between a single 3D plane and
the 4D objects is visible. This is done by slicing the 3D surface of
each object to get a 2D surface to display, in a manner similar to the
method by Chu et al. [2009], but taking only a single slice. Slicing
each tetrahedron gives a 2D polygon (either a triangle or a quad),
and all these polygons together make up the 2D surface to display.

The user can interact with the objects using either a mouse, touch
screen or VR controller. They can tap, drag and rotate objects only
within the confines of their current 3D slice, but obviously the 4D
objects are not confined to that space, and so might disappear out
of view. In that case, the user can drag a slider to move the 3D slice
along the fourth axis to find them again. I decided on this display
and interaction method because it lets users play with the 4D objects
in the usual 3D physical environment they are familiar with, while
still allowing them to find the objects in a very simple way if they
disappear.
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Fig. 3. A users knocks down a stack of hypercubic dominoes. The last dominoes are initially out of view, offset in the fourth dimension.

For the purpose of this simulation, gravity trivially generalizes
to 𝑛D: it points along the normal vector to the ground, towards the
ground. Air friction also has the same form as in the 3D case.

On touchscreen devices such as phones an accelerometer is usu-
ally available and is used to control the direction of gravity. Initially
the direction of gravity is restricted to the visible 3D slice, but a
button can be pressed to let the gravity vector rotate to face slightly
along the fourth dimension.
Some VR controllers support haptic feedback, and when a 4D

object held by the user hits another 4D object the program slightly
vibrates the controller holding the object.

Any position that the user can see corresponds to a position in
4D, and so the simulation can apply forces or impulses at these
positions to move the objects to follow the motion of the user. To
rotate an object it is only needed to find the 2D plane of rotation
in order to form a bivector to apply as torque. In the most general
case of rotating one 4D frame to another, I first find a rotor that
performs this transformation, then extract its bivector part. To find
this rotor I apply successive rotors to transform corresponding pairs
of coordinate axes into each other.

Examples of 4D situations and user interactions can be seen in the
accompanying video and in figures 1, 2, and 3. Commercial software
is also available [ten Bosch 2017].

9 4D DZHANIBEKOV EFFECT
In this section I briefly look at the case of the 4D Euler equation
(5) in torque-free conditions. In 3D a consequence of this equation
is the Dzhanibekov effect, first described by Poinsot [1851]. Given
a body with three unique moments of inertia, each moment of
inertia corresponds to a specific plane of rotation. Rotations in the
planes with lowest and highest moments of inertia are stable to
small perturbations in angular momentum, while for rotations in
the intermediate plane a small perturbation gets amplified to a larger,
periodic rotation.
In 4D the 𝜔𝑖 𝑗 component of the equation is:

𝐼𝑖 𝑗 ¤𝜔𝑖 𝑗 = (𝐼 𝑗𝑘 − 𝐼𝑖𝑘 )𝜔𝑖𝑘𝜔 𝑗𝑘 + (𝐼 𝑗𝑚 − 𝐼𝑖𝑚)𝜔𝑖𝑚𝜔 𝑗𝑚

where 𝑘 and𝑚 are the other two indices besides 𝑖 and 𝑗 . Note the
presence of a sum in this equation — unlike in 3D the conditions
for 4D rotational stability around each plane cannot be definitely
stated solely based on the body having distinct principal moments
of inertia.
The equation for plane (𝑖 𝑗 ) depends on all the other planes of

rotation (𝑖𝑘 , 𝑗𝑘 ,𝑖𝑚, 𝑗𝑚) except for the plane perpendicular to it (𝑘𝑚).
This is expected, as 4D objects can rotate in two perpendicular
planes independently.

The equations reduce to the 3D case if the initial angular velocities
lie within a 3D subspace (i.e. if 𝜔𝑖𝑐 = 𝜔𝑐𝑖 = 0 for any specific 𝑐):

figure 5c shows the usual unstable rotation when rotating around
an intermediate plane. The small decrease in angular momentum
over long time scales is due to the implicit integration method.

Double rotations appear to be stable states: figure 5a shows how
a rotation around the (𝑥𝑦) plane and small perturbations around
the other planes introduces the dual rotation (𝑧𝑤). The moments of
inertia seem to have little effect on the behavior, a similar graph is
generated for cuboids of size ( 12 , 1,

3
2 , 2), (

1
2 ,

1
2 , 3,

1
2 ) and others. Even

though rotation around the dual plane is independent (perturbing
only the (𝑧𝑤) plane does not affect the (𝑥𝑦) plane), the equations
are coupled through the other planes, which is what creates the
effect.

Figure 5b shows the effect removing perturbations from the initial
state of figure 5a. Additional oscillations are created but the system
still ends up in a stable state.
Figure 5d and 4 show the effect of adding an additional pertur-

bation to the initial state of figure 5c. The effect is similar to the
previous case.
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(a) 𝜔𝑥𝑦 = 1, 𝜔𝑖 𝑗 = 10−4
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(b) 𝜔𝑥𝑦 = 3.2, 𝜔𝑥𝑧 = 10−5,
𝜔𝑥𝑤 = 10−3
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(c) 𝜔𝑥𝑦 = −0.008, 𝜔𝑦𝑧 = 1.63
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(d) 𝜔𝑥𝑦 = −0.008, 𝜔𝑦𝑧 = 1.63,
𝜔𝑦𝑤 = 0.0018

Fig. 5. Angular velocity over time (in seconds) for a 4D cuboid of size
(1.1, 0.3, 2.5, 0.7) in various initial conditions.
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Fig. 4. A hypercuboid rotating under gyroscopic forces.

10 FUTURE WORK
The formulation of rigid body dynamics could be extended to non-
euclidean spaces, such as hyperbolic space. Other methods for colli-
sion detection, soft bodies, as well as other forces and constraints
could be generalized to higher dimensions. Concerning the interac-
tion method, it would be interesting to allow users to manipulate
4D objects outside of their 3D visible slice.

A BIVECTOR OPERATOR AND INERTIA TENSOR
MATRICES

2D case:
[𝑟 ]★ =

(
−𝑦 𝑥

)
Δ𝐼 =

(
𝑥2 + 𝑦2

)
3D case:

[𝑟 ]★ =
©«
−𝑦 𝑥 0
−𝑧 0 𝑥

0 −𝑧 𝑦

ª®¬
Δ𝐼 =

©«
𝑥2 + 𝑦2 𝑦𝑧 −𝑥𝑧
𝑦𝑧 𝑥2 + 𝑧2 𝑥𝑦

−𝑥𝑧 𝑥𝑦 𝑦2 + 𝑧2
ª®¬

4D case:

[𝑟 ]★ =

©«

−𝑦 𝑥 0 0
−𝑧 0 𝑥 0
−𝑤 0 0 𝑥

0 −𝑧 𝑦 0
0 −𝑤 0 𝑦

0 0 −𝑤 𝑧

ª®®®®®®®¬

Δ𝐼 =

©«

𝑥2 + 𝑦2 𝑦𝑧 𝑦𝑤 −𝑥𝑧 −𝑥𝑤 0
𝑦𝑧 𝑥2 + 𝑧2 𝑧𝑤 𝑥𝑦 0 −𝑥𝑤
𝑦𝑤 𝑧𝑤 𝑤2 + 𝑥2 0 𝑥𝑦 𝑥𝑧

−𝑥𝑧 𝑥𝑦 0 𝑦2 + 𝑧2 𝑧𝑤 −𝑦𝑤
−𝑥𝑤 0 𝑥𝑦 𝑧𝑤 𝑤2 + 𝑦2 𝑦𝑧

0 −𝑤𝑥 𝑥𝑧 −𝑦𝑤 𝑦𝑧 𝑤2 + 𝑧2

ª®®®®®®®¬
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